Exercise 50

Let $P(t)$ be the percentage of Americans under the age of 18 at time t. The table gives values of this function in census years from 1950 to 2010.

t	$P(t)$	t	$P(t)$
1950	31.1	1990	25.7
1960	35.7	2000	25.7
1970	34.0	2010	24.0
1980	28.0		

(a) What is the meaning of $P^{\prime}(t)$? What are its units?
(b) Construct a table of estimated values for $P^{\prime}(t)$.
(c) Graph P and P^{\prime}.
(d) How would it be possible to get more accurate values for P^{\prime} ?

Solution

Part (a)
$P^{\prime}(t)$ represents the rate that the percentage of Americans increases as t increases. Its units are percentage points per year.

Part (b)

Start by calculating the slopes of the secant lines.

$$
\begin{aligned}
& m_{5}=\frac{P(1960)-P(1950)}{1960-1950}=\frac{35.7-31.1}{10}=0.46 \\
& m_{6}=\frac{P(1970)-P(1960)}{1970-1960}=\frac{34.0-35.7}{10}=-0.17 \\
& m_{7}=\frac{P(1980)-P(1970)}{1980-1970}=\frac{28.0-34.0}{10}=-0.60 \\
& m_{8}=\frac{P(1990)-P(1980)}{1990-1980}=\frac{25.7-28.0}{10}=-0.23 \\
& m_{9}=\frac{P(2000)-P(1990)}{2000-1990}=\frac{25.7-25.7}{10}=0.00 \\
& m_{0}=\frac{P(2010)-P(2000)}{2010-2000}=\frac{24.0-25.7}{10}=-0.17
\end{aligned}
$$

For the years, 1960-2000, take the average of the secant lines to get the best estimate for $P^{\prime}(t)$.

$$
\begin{aligned}
& P^{\prime}(1950) \approx m_{5}=0.46 \\
& P^{\prime}(1960) \approx \frac{m_{5}+m_{6}}{2}=0.145 \\
& P^{\prime}(1970) \approx \frac{m_{6}+m_{7}}{2}=-0.385 \\
& P^{\prime}(1980) \approx \frac{m_{7}+m_{8}}{2}=-0.415 \\
& P^{\prime}(1990) \approx \frac{m_{8}+m_{9}}{2}=-0.115 \\
& P^{\prime}(2000) \approx \frac{m_{9}+m_{0}}{2}=-0.085 \\
& P^{\prime}(2010) \approx m_{0}=-0.17
\end{aligned}
$$

Part (c)

Below is a graph of $P(t)$ versus t.

This graph shows the percentage of the American population under the age of 18 .

Below is a graph of $P^{\prime}(t)$ versus t.

This graph shows the change in the percentage of the American population under the age of 18 .

Part (d)

To get more accurate results for $P^{\prime}(t)$, the population would have to be known more often than every 10 years.

